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Abstract
The density-matrix formalism is applied to calculate the spin-relaxation time
for two-dimensional systems with a hierarchy of spin–orbit couplings, such as
Rashba-type, Dresselhaus-type and strain-induced. It is found that the spin-
relaxation time can be infinite if those coupling strengths α, β , γ1 and γ2 satisfy
either condition (i) α = β, γ1 = 0 or (ii) α = −β, γ2 = 0, which correspond
to the vanishing Yang–Mills fields. The effect caused by the application of an
external magnetic field is also discussed. It is found that the longitudinal spin
component can possess infinite life time when the spin components, the Larmor
precession frequency and the external magnetic field satisfy certain relations for
which the Yang–Mills fields become zero.

1. Introduction

Spintronics [1], or spin-based electronics [2], has been given increasing attention during the last
decade. One important issue in this research area is the manipulation of spin-polarized electrons
with the help of an electric field [3–7]. A system with spin–orbit couplings makes these
efforts possible and thus brings great interests from both academic and practical aspects [3–6].
However, the problem of the loss of the average microscopic spin is crucial in experimental
data analysis and applicable device construction. The study of the spin-relaxation mechanisms
of two-dimensional electrons is thus very important.

Spin relaxation exhibits some properties of the spin dynamics, which plays an inevitable
role in realizing applicable spintronics devices. The main mechanism of spin relaxation in
systems lacking inversion symmetry is the D’yakonov–Perel mechanism [8, 9], in which the
spin of the electron precesses due to an effective k-dependent magnetic field. For electrons
in two-dimensional semiconductor heterostructures or quantum wells, the structure inversion
asymmetry brings about the Rashba spin–orbit coupling [10–12], while the bulk inversion
asymmetry in the A3B5 compounds leads to the Dresselhaus [13] spin–orbit coupling. The
spin-relaxation time in some semiconductors with both Rashba and Dresselhaus couplings was
calculated by analysing the condition of spin decay [14, 15], and the effect of external magnetic
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fields was discussed [16] furthermore. An infinite spin-relaxation time [17] was predicted in
a system with equal Rashba and Dresselhaus coupling constants by making use of an SU(2)

symmetry in k-space. It is important to understand the spin-relaxation mechanism and the
condition for infinite spin-relaxation time to occur, which would be helpful for overcoming the
difficulties in spin-based information processes.

In this paper, we develop the aforementioned theory of spin relaxation to describe two-
dimensional electron systems in the presence of a U(1) Maxwell field and SU(2) Yang–Mills
fields. Such a system can be realized in certain semiconductor materials where the spin–
orbit couplings, such as Rashba-type, Dresselhaus-type and strain-induced, play crucial roles.
Using the density-matrix formalism, we calculate the spin-relaxation time for a system with a
hierarchy of spin–orbit couplings. In the absence of the Maxwell magnetic field, infinity of the
spin-relaxation time occurs if the spin–orbit couplings α, β , γ1 and γ2 satisfy the condition in
which the Yang–Mills fields vanish. In order to capture the physical essence of the emergence
of an infinite spin-relaxation time, we further study the effect of the external magnetic field on
the same systems and find that the longitudinal spin component can also possess infinite life
times when the spin orientation, the Larmor precession frequency and external magnetic field
satisfy some relations. Based on the analysis of spin–orbit systems with or without Maxwell
magnetic fields, we expose a physical picture for a clear understanding of the infinite spin-
relaxation time, which is helpful for the design of spin-based devices.

2. Spin relaxation arising from spin–orbit couplings

To start with a general formalism, we consider the Schrödinger equation for a particle moving
in an external U(1) Maxwell field and SU(2) Yang–Mills fields [18],

ih̄
∂

∂ t
�(r, t) = H�(r, t),

H = 1

2m

(
p̂ − e

c
A − ηAa τ̂ a

)2 + eA0 + ηAa
0 τ̂

a,

(1)

where � is a two-component wavefunction, Aμ = (A0, Ai) denotes the vector potential of the
Maxwell electromagnetic field, and Aμ = Aa

μτ̂ a that of Yang–Mills field, with τ̂ a being the
generators of the SU(2) Lie group. It has been shown [18] that the Yang–Mills fields can be
realized in certain semiconductor materials.

First, we consider a two-dimensional system (in the x–y-plane) with four-parameter Yang–
Mills gauge potentials: �A0 = (0, 0, 0), �Ax = 2m

ηh̄ (0, β + α, γ2), �Ay = 2m
ηh̄ (β − α, 0, γ1),

�Az = (0, 0, 0) where α, β and the γ s characterize the strengths of spin–orbit couplings
of Rashba-type, Dresselhaus-type, etc, respectively. The couplings characterized by the γ s
are relevant to the effect caused by strain exerting on inversion asymmetric semiconductor
materials [19]. Writing out the Hamiltonian explicitly, we have

H = h̄2k2

2m
+ V + kyσx(α − β) − kxσy(α + β) − (γ1ky + γ2kx)σz

= h̄2k2

2m
+ V + h̄

2
�σ ·Ωk, (2)

with V = 2m(γ 2
1 + 2(α2 + β2) + γ 2

2 )/h̄2 + Vsc, Ωk = 2(ky(α − β),−kx(α + β),−(γ1ky +
γ2kx))/h̄ and �σ being the Pauli matrix. Here m stands for the effective mass of electrons in
the material, and Vsc = eA0 the scattering potential, which is independent of spin indices. The
scattering is supposed to be elastic. The last term in the above equation, H ′ = h̄

2 �σ ·Ωk, causes
the precession of electron spins with the Larmor frequency Ωk, which can be regarded as an
effective magnetic field.
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We apply the density-matrix formulation proposed in [14, 19] to calculate the spin-
relaxation time. The electron density matrix ρ(k) with components ρss ′(k), s, s′ being the
indices of electron spin states, is defined by

ρ(k)

τ
+ i

h̄
[H ′(k), ρ(k)] +

∑
k′

Wkk′(ρ(k) − ρ(k′)) = 0, (3)

where τ is the life time, Wkk′ is the scattering probability from k to k′ and the square bracket
denotes commutator.

Since H ′ contributes merely a small perturbation, the spin-relaxation time is much longer
than the time for the electron-momentum distribution to become isotropic, i.e., τ � τ1, τ1

being the momentum relaxation time. Therefore, it is convenient to split the density matrix into
two parts,

ρ = ρ + ρ ′, with ρ ′ = 0. (4)

Here we use a bar to denote an average taken over all directions of k and a prime to denote
the deviation part, i.e., ρ depends on ε = h̄2|k|2/2 and ρ ′(k) � ρ. Taking the average for
equation (3), we have the following relation:

ρ

τ
+ i

h̄
[H ′(k), ρ ′(k)] = 0. (5)

Equation (3) can also be written out as

ρ ′(k)

τ
+ i

h̄
[H ′(k), ρ ′(k)] − i

h̄
[H ′(k), ρ ′(k)] + i

h̄
[H ′(k), ρ]

+
∑

k′
Wkk′ [ρ ′(k) − ρ ′(k′)] = 0, (6)

in which equation (5) has been used. Without taking account of the higher-order terms, one
needs to solve the following equation:

i

h̄
[H ′(k), ρ] +

∑
k′

Wkk′ [ρ ′(k) − ρ ′(k′)] = 0. (7)

This approximation is valid when �kτ1 � 1. For an elastic process the scattering probability
is a function of deflection angle only, which makes it possible to expand the above equation in
terms of Fourier series. After some algebra, one can express ρ ′ in terms of ρ. Substituting it
into equation (5) and employing the Boltzmann equation with only the collision term, one can
obtain (

∂ρ

∂ t

)

sp.rel.

= − 1

h̄2

∑
n

τn[H ′
−n, [H ′

n, ρ]], (8)

with

H ′
n =

∮
dφk

2π
H ′(k) exp(−inφk), (9)

1

τn
=
∮

dθWkk′(1 − cos nθ), (10)

where φk is the angle between k and the x-axis, and θ = φk − φk′ .
Now we are in the position to investigate the kinetics of the spin density Si (t) =∫

ai(ε, t) dε where ai = tr(ρ̄σi ). Equation (8) gives rise to a differential equation for
ai(ε, t). Following the factorization technique [14], ai(ε, t) = [F+(ε) − F−(ε)]si(t), where
s = (s1, s2, s3) denotes the unit vector along the spin and F±(ε) refer to the distribution function
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projected along the direction parallel or antiparallel to the unit vector. Accordingly, we obtain
the evolution equation for the spin density at a time longer than τ1 [15]:

Ṡi (t) = − 1

τi j
S j (t)

1

τi j
= 1

2h̄2

+∞∑
n=−∞

∫
dε (F+ − F−)τntr

{[H ′−n, [H ′
n, σ j ]]σi

}
∫

dε(F+ − F−)
,

(11)

where i, j = x, y, z.
For the Hamiltonian under consideration (2), we obtain the following:

1

τxx
= γ 2

1 + γ 2
2 + (α + β)2

2
�,

1

τyy
= γ 2

1 + γ 2
2 + (α − β)2

2
�,

1

τzz
= (α2 + β2)�,

1

τxz
= 1

τzx
= γ1(α − β)

2
�,

1

τyz
= 1

τzy
= −γ2(α + β)

2
�,

1

τxy
= 1

τyx
= 0,

(12)

where the coefficient � is given by

� = 8m

h̄4

∫
dε [F+(ε) − F−(ε)]τ1(ε)ε∫

dε [F+(ε) − F−(ε)] .

The above entities in equation (12) define the spin-relaxation tensor, � = mat( 1
τi j

).
Diagonalizing this matrix, we obtain

T
−1 = �

2

⎛
⎝

1
τ⊥ 0 0

0 1
τ‖,+ 0

0 0 1
τ‖,−

⎞
⎠ , (13)

with

1

τ‖,±
= 1

2

{
1

τ⊥
±
√

(γ 2
1 + γ 2

2 )2 + 8αβ(γ 2
2 − γ 2

1 + 2αβ)

}

1

τ⊥
= γ 2

1 + γ 2
2 + 2(α2 + β2).

(14)

Clearly, two of the diagonal elements are always positive definite and the other one 1/τ‖,− is
not. The condition for a vanishing 1/τ‖,− turns out to be

γ 2
1 (α + β)2 + γ 2

2 (α − β)2 + (α + β)2(α − β)2 = 0. (15)

The above equation gives rise to two solutions:

(i) α = β, γ1 = 0,

(ii) α = −β, γ2 = 0.
(16)

Under these conditions, 1/τ‖,− are zero when the infinite spin-relaxation times emerge.
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Actually, the Yang–Mills ‘magnetic’ field Bz = ba τ̂ a can be calculated [18], namely

b1 = 4m2

ηh̄2
(β + α)γ1,

b2 = 4m2

ηh̄2 (β − α)γ2,

b3 = 4m2

ηh̄2
(α2 − β2).

(17)

The condition (15) is also equivalent to

|�b|2 = 0, �b = (b1, b2, b3),

which implies that the module of the Yang–Mills ‘magnetic’ field vanishes. The Yang–Mills
‘electric’ field �Ei = η �A0 × �Ai is clearly null in the absence of an external magnetic field,
A0 = 0. Thus we see that the spin-relaxation time can be infinitely large when the Yang–
Mills fields are zero. To observe the role that the terms neglected in equation (6) may play, we
take the higher-order terms into account by means of an iteration method. We find the third-
order contribution to the spin-relaxation tensor is zero and then calculate the fourth order. Our
result is given in appendix B. One can see that the fourth-order contribution at the vicinity
that conditions (16) fulfil is still negligible. This result is expected to be a criterion to evaluate
whether there is an infinite spin-relaxation time in two-dimensional systems with spin–orbit
couplings. In order to determine which spin component has an infinite life time, the spin
precession needs to be analysed concretely.

The nonvanishing spin–orbit coupling γ1 or γ2 will bring about some new features which
may be useful for possible design with an infinite spin-relaxation time. For the first case α = β

and γ1 = 0 in equation (16), the Hamiltonian H ′ reduces to

H ′ = h̄

2
�σ ·Ωk = −kx(2ασy + γ2σz). (18)

The orientation of Larmor precession frequency Ωk is parallel to z ′-axis as illustrated in
figure A.1 in appendix A, thus one can understand why the life time of the Sz′ component is
infinite while the other two decay. Here the z ′-axis is defined in the diagonalization procedure
of the spin-relaxation tensor equation (12) for the first case given in appendix A.

From appendix A and the figure therein, we can see that the strengths of spin–orbit
coupling γ2 and α determine the angle θ ′ between Ωk and the z-axis. The angle θ ′ can be
manipulated by these two parameters; thus a definite alignment of spin with infinite life time
can be realized with the help of tuning the spin–orbit coupling strengths. On the other hand,
the ratio of the different types of spin–orbit coupling constant can be determined by means of
measuring the spin-relaxation time experimentally.

For the second case in equation (16), a similar analysis can be carried out, which is omitted
here. In the special case when both γ1 and γ2 vanish, one component of the tensor of the spin-
relaxation time becomes zero, i.e., 1/τxx = 0 for α = −β or 1/τyy = 0 for α = β , and thus
the Sx or Sy has infinite life time, which is just the case considered in [14].

3. Spin relaxation affected by an external magnetic field

In the previous section, we considered the case of �A0 = 0, which means that an external
magnetic field is absent. In the presence of a uniform magnetic field, we should take account
of

�A0 = −2μB

η
(Bx, By, Bz), (19)

5
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where μB is the Bohr magneton. The existence of an external magnetic field is known to affect
the dynamics of the electron’s spin. The Larmor precession of an electron’s spin around a
sufficiently strong longitudinal magnetic field will suppress the precession about the internal
random magnetic fields [20]. The cyclotron motion will change the wavevector k and affect
the spin relaxation due to the D’yakonov–Perel mechanism. The density-matrix formalism is
applicable for calculating the spin-relaxation time of electrons. Following [16], we expand the
density matrix for electrons in terms of the unit and Pauli matrices,

ρ(k) = fk + sk · �σ, (20)

where fk = tr[ρ(k)/2] is the spin-averaged-electron-distribution function and sk =
tr[ρ(k)�σ/2] is the spin per k-state electron. The kinetic equation for the spin distribution is
given by [16, 21, 22]:

∂sk

∂ t
+ sk × (�ωL + Ωk) + �ωC · [k × ∇ksk] +

∑
k′

Wkk′(sk − sk′) = 0, (21)

in which the second term refers to spin precession caused by spin–orbit couplings given in
equation (2) together with the external magnetic field; the third term is related to the wavevector
variations due to the cyclotron motion, and the last term denotes the collision integral. Here �ωL

is the Larmor frequency vector and �ωC the cyclotron frequency vector along the growth axis
[001] with | �ωC |= eBz

mc , and Bz the perpendicular component of the magnetic field. Since the
internal random magnetic field is regarded as a perturbation, i.e., Ωkτ1 � 1, we can split the
spin distribution function sk into the following,

sk = s0
k + δsk, (22)

where s0
k is a quasi-equilibrium distribution function and thus is independent of the direction

of k. In contrast, δsk is a nonequilibrium correction arising from spin–orbit couplings as well
as other internal random magnetic fields, and thus it contains only the first angular harmonics
of the spin distribution [23] because only elastic scattering processes are taken into account;
accordingly

δsk = R1 cos(φk) + R2 sin(φk), (23)

where the two vectors R1 and R2 are irrelevant to the direction of the wavevector k though
they are functions of the module of k in general. Substituting equations (22) and (23) into
equation (21), we obtain the following equations:

ds0
k

dt
+ s0

k × �ωL + δsk × Ωk = 0, (24)

dδsk

dt
+ s0

k × Ωk + δsk × �ωL + �ωC · [k × ∇kδsk] + δsk

τ1
= 0, (25)

where τ1 is the momentum-relaxation time whose definition is also given by equation (10) for
n = 1. In the light of the number of total electrons N = 2

∑
k fk and the single electron

spin S0 =
∑

k sk

N , summing equation (24) over the wavevectors, we obtain the balance equation
describing the electron’s spin relaxation:

dS0

dt
+ S0 × �ωL + �̂S0 = 0, (26)

where the spin-relaxation tensor �̂ referring to the inverse of the spin-relaxation times is defined
as

�̂S0 = 1

N

∑
k

δsk × Ωk. (27)
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Figure 1. The scheme of coordinate frames. z-axis parallel to the [001] growth axis. θ and ϕ are
the polar and the azimuthal angles of the external magnetic field B. z ′ is chosen in alignment with
the orientation of B, y′ lies in the x–y-plane, and x ′ is chosen to form a right-hand triple with y′
and z ′.

The nonequilibrium correction δsk can be obtained from equation (25) in which the contribution
of the rate dδsk/dt is negligible because its magnitude is of higher order in Ωkτ1.

First, we rotate the original coordinate system {x̂, ŷ, ẑ}, which is related to the principal
crystal axes to the new one {x̂ ′, ŷ ′, ẑ′} (illustrated in figure 1). The coordinates in both systems
are related, (x̂, ŷ, ẑ) = (x̂ ′, ŷ ′, ẑ′)RT, by

R =
( cos θ cos ϕ, − sin ϕ, sin θ cos ϕ

cos θ sin ϕ, cos ϕ, sin θ sin ϕ

− sin θ, 0, cos θ

)
. (28)

Here, θ is the angle between z and z ′, and ϕ the angle between y ′ and y ([010]). Similar
equations are valid for the momentum components, ki = Ri j k ′

j (here i, j = x, y, z).
It is convenient to calculate the nonequilibrium correction δsk and the components of the
spin-relaxation tensor in the new frame of coordinates where the Larmor frequency vector
�ωL = μB

h̄ B j ê j in the original coordinates becomes �ωL = ωL ẑ′ in the new coordinates.
After tedious calculation, we obtain the spin-relaxation tensor (inverse of the spin-

relaxation time) Γ̂ for degenerate electrons with Fermi energy EF, which is given in appendix C.
These results are valid for arbitrary random internal magnetic field and arbitrary orientation of
the external field, from which we obtain several conclusions that will be illustrated in turn.

3.1. Longitudinal relaxation

The longitudinal spin-relaxation rate is 1/τL = �z′z′ . From equation (C.1), we can obtain the
following conclusion: �z′z′ = 0 when either

α = β, γ1 = 0, ϕ = π/2, θ = tan−1(2α/γ2), (29a)

or

α = −β, γ2 = 0, ϕ = 0, θ = − tan−1(2α/γ1). (29b)

When the longitudinal spin-relaxation time τL is infinite, the spin component Sz′ has an infinite
life time. Certainly, the Hamiltonian H ′ describing the electron spin precession arising from
spin–orbit coupling can also be written as equation (18) for the case in equation (29a). One
can see from figure A.1 that Sz′ is the component parallel to Ωk when θ ′ = θ = tan−1(2α/γ2)

and ϕ = π/2. Thus the infinite life time of Sz′ can easily be understood from a physical point
of view; that is to say, Sz′ will not precess about the Larmor precession frequency Ωk and the

7
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external magnetic field B when Ωk is parallel to B. However, the other components, Sx′ and
Sy′ , have finite life time due to the precession around Ωk arising from the internal random
magnetic field. If the strength of both spin–orbit couplings γ1 and γ2 vanishes, the longitudinal
component of the tensor �z′z′ is zero when θ = π/2, ϕ = π/2, which can be seen from
equation (C.1). This recovers the special case discussed in [16].

For the latter case in equation (29b), the Hamiltonian H ′ becomes

H ′ = h̄

2
�σ ·Ωk = ky(2ασx − γ1σz). (30)

The Larmor frequency Ωk = 2ky

h̄ (2α, 0, −γ1) is parallel to the external magnetic field
B(θ = − tan−1(2α/γ1), ϕ = 0). So Sz′ does not decay because Ωk is parallel to B.

We can verify from the relations given by equations (29b) that both the Yang–Mills
‘magnetic’ and ‘electric’ fields are zero. Note that the restrictions on the θ and ϕ related to
external magnetic field are precisely the same condition for the Yang–Mills ‘electric’ field
being zero. Therefore, vanishing Yang–Mills fields can still be a criterion for the existence of
infinite spin-relaxation time in the presence of an external magnetic field.

3.2. Transverse relaxation

Let us analyse the spin relaxation in the plane perpendicular to the external magnetic field.
One can find that the transverse components of the spin-relaxation tensor can also be zero (i.e.,
�x′ x′ = 0, �x′ y′ = 0, �y′x′ = 0) when either

α = β, γ1 = 0, ϕ = π/2, θ = − tan−1
( γ2

2α

)
, (31a)

or

α = −β, γ2 = 0, ϕ = 0, θ = tan−1
( γ1

2α

)
. (31b)

Here the Yang–Mills ‘magnetic’ field is zero but its ‘electric’ field is not zero; hence infinite
spin-relaxation time does not occur for �z′z′ 
= 0.

As shown in figure 2, the x ′-axis is antiparallel to the Larmor frequency (i.e., x̂ ′ ‖ −Ωk)
for the case in equation (31a). The spin component Sx′ does not precess about the Larmor
precession frequency Ωk. We know that B is perpendicular to Ωk from figure 2; thus Sx′ will
precess about the constant external magnetic field B in the plane parallel to Ωk. So the random
internal magnetic fields and external magnetic field cannot induce spin relaxation for the spin
component Sx′ due to �x′ x′ = 0. And the admixture of the x ′ component to the y ′ component
of spin-relaxation tensor (which is described by �x′ y′ , �y′x′ ) is zero, namely �x′ y′ = 0 and
�y′x′ = 0, which can also be calculated from equations (C.1)–(C.5).

For the latter case in equation (31b), the direction of the external magnetic field is also
perpendicular to the Larmor frequency Ωk, as illustrated in equation (30). The spin component
Sx′ is antiparallel to the Larmor frequency (x̂ ′ ‖ −Ωk). The random internal magnetic field and
external magnetic field will not induce spin relaxation for the spin component Sx′ for the same
reason as mentioned before.

The components �x′ z′ and �y′z′ are smaller than others when the external magnetic field is
sufficiently strong (�2

kτ1 � ωL). Under this condition the in-plane spin components rapidly
rotate and the admixture of the in-plane components to z ′-component (which is described by
�x′ z′ , �y′z′ ) plays no role in the spin dynamics. Therefore the above result manifests the general
solutions of spin-relaxation time for the Hamiltonian equation (2).

8
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Figure 2. Schematic of the case �x ′x ′ = 0. α = β, γ1 = 0, ϕ = π/2,
θ = tan−1(−γ2/2α); the external magnetic field B is parallel to the z ′-
direction, and the x ′-axis is antiparallel to the Larmor frequency Ωk.

4. Summary

In the above, we have developed a consistent theory of spin dynamics to describe particles
moving in an external U(1) Maxwell field and SU(2) Yang–Mills fields which characterizes
spin–orbit couplings in certain semiconductors (such as Rashba-type, Dresselhaus-type, strain-
induced or other complex types). We used the density-matrix formalism to calculate the spin-
relaxation time in such systems in the absence and in the presence of an external magnetic field,
respectively. In the absence of an external magnetic field, we find that the spin component
Sz′ has an infinite life time if the strengths of spin–orbit couplings α, β , γ1 and γ2 satisfy
either (i) α = β, γ1 = 0 or (ii) α = −β, γ2 = 0. In such a case, the Yang–Mills fields
vanish. From these conditions, the direction of the spin component with infinite life time can
be manipulated by tuning α, γ2 or β , γ1 respectively. In the presence of an external magnetic
field, we considered the magnetic effect on a two-dimensional system. We obtained that the
longitudinal spin-relaxation time is infinite when Sz′ is parallel to Ωk and B if either (i′) α = β ,
γ1 = 0, ϕ = π/2, θ = tan−1(2α/γ2) or (ii′) α = −β , γ2 = 0, ϕ = 0, θ = − tan−1(2α/γ1).
We noticed that the vanishing Yang–Mills fields can be a criterion for the existence of infinite
spin-relaxation time. We also analysed the spin relaxation for the in-plane spin component Sx′ .
The external magnetic field cannot induce spin relaxation for Sx′ if it is antiparallel to Ωk and
perpendicular to B for either (iii′) α = β , γ1 = 0, ϕ = π/2, θ = tan−1(−γ2/2α) or (iv′)
α = −β , γ2 = 0, ϕ = 0, θ = tan−1(γ1/2α). These solutions provide a better understanding
on the spin dynamics of a two-dimensional system with four-parameter Yang–Mills potentials,
which characterizes a hierarchy of spin–orbit coupling in certain semiconductor materials. It
is expected to expose some more clues for manipulating spin via certain spin–orbit couplings
in semiconductors or elaborating spintronics storage devices with long spin-relaxation time.
Note that other mechanisms will be necessary for systems that cannot be characterized by the
aforementioned Yang–Mills field formalism.
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Appendix A. On the diagonalizing bases

The spin-relaxation tensor given by equation (12) is diagonalized to be equation (13) by a U
matrix,

9
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Figure A.1. The orientation of the Larmor frequency Ωk for the case α = β,
γ1 = 0, which defines the z ′-axis of the new frame of coordinates.

T
−1 = U−1� U. (A.1)

The matrix U turns the evolution equation for the spin density, equation (11), to be

dS′

dt
= U−1 dS

dt
= −(U−1� U)U−1S

= −T
−1 S′. (A.2)

Hence, the new spin components S′ = U−1S can be obtained. With particular interest for
α = β , γ1 = 0, we write out the U matrix:

U =
⎛
⎜⎝

1 0 0
0 γ2√

γ 2
2 +4α2

2α√
γ 2

2 +4α2

0 −2α√
γ 2

2 +4α2

γ2√
γ 2

2 +4α2

⎞
⎟⎠ ; (A.3)

then we have

S′
x = Sx ,

S′
y = cos θ ′Sy − sin θ ′Sz,

S′
z = sin θ ′Sy + cos θ ′Sz,

where tan θ ′ = 2α/γ2. This means the existence of spin–orbit coupling γ2 makes the orientation
of the Larmor frequency Ωk to change from the y-axis to the z ′-axis. As illustrated in figure A.1,
θ ′ refers to the angle between the Larmor frequency and the z-axis.

Appendix B. Higher-order contributions

The evolution equation for the spin density up to fourth order reads

Ṡi (t) = − 1

τ ′
i j

S j (t)

1

τ ′
i j

= 1

2h̄2

+∞∑
n=−∞

∫
dε (F+ − F−)τn tr

{[H ′−n, [H ′
n, σ j ] ]σi

}
∫

dε (F+ − F−)
− 1

2h̄4

+∞∑
n=−∞

×
∫

dε(F+ − F−)τntr
{[H ′−n,

∑
n′′ [H ′

n−n′′, τn′′
∑

n′ [H ′
n′′−n′, τn′ [H ′

n′, σ j ] ] ] ]σi
}

∫
dε(F+ − F−)

(B.1)

10
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where i, j = x, y, z. For the Hamiltonian (2) we obtain
1

τ ′
xx

= 1

τxx
− [(α − β)2((α + β)2 + (γ 2

1 + γ 2
2 )) + ((α + β)2 − γ 2

1 + γ 2
2 )2 + 4γ 2

1 γ 2
2 ]�′,

1

τ ′
yy

= 1

τyy
− [(α − β)4 + (α − β)2((α + β)2 + 2(γ 2

1 − γ 2
2 ))

+ (α + β)2(γ 2
1 + γ 2

2 ) + (γ 2
1 + γ 2

2 )2]�′,
1

τ ′
zz

= 1

τzz
− [(α + β)4 + (α − β)4 + (α + β)2(γ 2

1 + γ 2
2 )

+ (α − β)2(γ 2
1 + γ 2

2 − 2(α + β)2)]�′,
1

τ ′
xz

= 1

τ ′
zx

= 1

τxz
− [(α − β)2 − 3(α + β)2 + γ 2

1 + γ 2
2 ]γ1(α − β)�′,

1

τ ′
yz

= 1

τ ′
zy

= 1

τyz
+ [(α + β)2 − 3(α − β)2 + γ 2

1 + γ 2
2 ]γ2(α + β)�′,

1

τ ′
xy

= 1

τ ′
yx

= 1

τxy
− 4γ1γ2(α − β)(α + β)�′,

(B.2)

with 1/τi j the same as in equation (12) and �′ given by

�′ = 8m2

h̄8

∫
dε [F+(ε) − F−(ε)]τ 2

1 (ε)τ2(ε)ε
2

∫
dε [F+(ε) − F−(ε)] .

Appendix C. The spin-relaxation tensor with magnetic field

In the presence of a magnetic field, we obtained the following spin-relaxation tensor:

�z′z′ = 2k2τ1

h̄2 D+ D−
{[1 + τ 2

1 (ω2
C + ω2

L)][(α + β)2 cos2 ϕ + (α − β)2 sin2 ϕ

+ (γ2 sin θ − (α + β) cos θ sin ϕ)2 + (γ1 sin θ + (α − β) cos θ cos ϕ)2]
+ 4τ 2

1 ωCωL[(α2 − β2) cos θ + (α + β)γ1 sin θ cos ϕ

+ (β − α)γ2 sin θ sin ϕ]} (C.1)

�x′ x′ = 2k2τ1

h̄2

{
1 + (ω2

C + ω2
L)τ 2

1

D+ D−
[(γ2 cos θ + (α + β) sin θ sin ϕ)2

+ (γ1 cos θ − (α − β) sin θ cos ϕ)2] + (α − β)2 sin2 ϕ + (α + β)2 cos2 ϕ

1 + ω2
Cτ 2

1

}

(C.2)

�y′ y′ = 2k2τ1

h̄2

{
1 + (ω2

C + ω2
L)τ 2

1

D+ D−
[(γ2 cos θ + (α + β) sin θ sin ϕ)2

+ (γ1 cos θ − (α − β) sin θ cos ϕ)2]
+ 1

1 + ω2
Cτ 2

1

[(γ2 sin θ − (α + β) cos θ sin ϕ)2

+ (γ1 sin θ + (α − β) cos θ cos ϕ)2]
}

(C.3)

�x′ y′ = 2k2τ1

h̄2

{ [(ω2
C − ω2

L)τ 2
1 − 1]ωLτ1

D+ D−
[(γ2 cos θ + (α + β) sin θ sin ϕ)2

11
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+ (γ1 cos θ − (α − β) sin θ cos ϕ)2]
+ 1

1 + ω2
Cτ 2

1

[−(α2 − β2) cos θωCτ1 + ((α − β)2 − (α + β)2) cos θ cos ϕ sin ϕ

+ γ1[(α − β) sin θ sin ϕ − (α + β)ωCτ1 sin θ cos ϕ]
+ γ2[(α − β)ωCτ1 sin θ sin ϕ + (α + β) sin θ cos ϕ]]

}
(C.4)

�y′x′ = 2k2τ1

h̄2

{ [1 − (ω2
C − ω2

L)τ 2
1 ]ωLτ1

D+ D−
[(γ2 cos θ + (α + β) sin θ sin ϕ)2

+ (γ1 cos θ − (α − β) sin θ cos ϕ)2]
+ 1

1 + ω2
Cτ 2

1

[(α2 − β2) cos θωCτ1 + ((α − β)2 − (α + β)2) cos θ cos ϕ sin ϕ

+ γ1[(α − β) sin θ sin ϕ + (α + β)ωCτ1 sin θ cos ϕ]
+ γ2[(α − β)ωCτ1 sin θ sin ϕ + (α + β) sin θ cos ϕ]]

}
(C.5)

with k = √
2m EF and D± = 1 + (ωL ± ωC)2τ 2

1 .
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